A CÉLULA É A UNIDADE MORFOFISIOLÓGICA DOS SERES VIVOS, POIS É ELA QUE FORMA O ORGANISMO (MORFOLOGIA) E FAZ O MESMO FUNCIONAR (FISIOLOGIA).
DENTRE AS FUNÇÕES CELULARES EXISTENTES, ESTÃO ALGUMAS MUITO PRÓXIMAS DAS FUNÇÕES ORGÂNICAS COMO RESPIRAÇÃO, CIRCULAÇÃO, DIGESTÃO, ENTRE OUTRAS. AS CÉLULAS TAMBÉM SE REPRODUZEM PARA MANTER O ORGANISMO SEMPRE EM PERFEITO EQUILIBRIO, OS NÍVEIS DE ORGANIZAÇÃO DOS SERES VIVOS CELULARES SÃO:
CLASSIFICAÇÃO CELULAR: AS CÉLULAS PODEM SER CLASSIFICADAS DE ACORDO COM SUA MORFOLOGIA EM: CÉLULAS PROCARIONTES: SÃO AQUELAS DESPROVIDAS DE UMA MEMBRANA NUCLEAR, CONSTITUIDAS APENAS DE MEMBRANA PLASMÁTICA E CITOPLASMA, PORÉM COM O CONTEÚDO GENÉTICO ENVOLVIDO PELO CITOPLASMA.
EXEMPLO:
IA CELULAR
As células são oriundas de outras células, e cada uma leva consigo as informações hereditárias.
AS CÉLULAS TAMBÉM PODEM SER CLASSIFICADAS EM CÉLULAS EUCARIONTES, CÉLULAS QUE JÁ POSSUEM UMA MEMBRANA CELULAR DEFINIDA(CARIOTECA), SEPARANDO O CONTEÚDO NUCLEAR DO CITOPLASMÁTICO.
Para que seus alunos se familiarizem com as principais diferenças entre células eucarióticas e procarióticas, entregue o quadro abaixo para ser completado.
䦋㌌㏒㧀좈琰茞ᓀ㵂Ü
Células procariontes
Células eucariontes
Envoltório nuclear
Ausente
Presente
DNA
Desnudo
Combinado com proteínas
Cromossomas
Únicos
Múltiplos
Nucléolos
Ausentes
Presentes
Divisão
Fusão binária
Mitose e meiose
Endomembranas
Ausentes
Presentes
Mitocôndrias
Ausentes
Presentes
Cloroplastos
Ausentes
Presentes em células vegetais
Parede celular
Não celulósica
Celulósica em células vegetais
Exocitose e endocitose
Ausentes
Presentes
Citoesqueleto
Ausente
Presente
AS CÉLULAS SÃO CONSTITUIDAS POR UM NÚMERO GRANDE DE SUBSTÂNCIAS ORGÂNICAS E APENAS DOIS GRUPOS DE SUBSTÂNCIAS INORGÂNICAS.
AS SUBSTÂNCIAS ORGÃNICAS ESTÃO DEFINIDAS COMO AQUELAS CONSTITUIDAS DE CARBONO E SÃO: GLICOSE, PROTEÍNAS, GORDURAS, ENTRE OUTRAS.
AS SUBSTÂNCIAS INORGÂNICAS SÃO AQUELAS DESPROVIDAS DE CARBONO E SÃO ELAS: ÁGUA E SAIS MINERAIS.
Introdução:
Em estudos de genética a preocupação básica é o entendimento de como as características são repassadas entre as gerações. De uma forma geral, podemos imaginar vários indivíduos de uma população que se intercruzam formando novos descendentes, que manifestarão fenótipos resultantes da ação e interação dos genes recebidos.
O processo de origem de novos indivíduos se inicia pela formação de gametas dos genitores e subsequente união entre os mesmos. Da fecundação forma-se a célula ovo, ou zigoto, que reconstitui o número de cromossomo da espécie. Esta célula inicial se desenvolve gerando o indivíduo adulto, formados por mais de um trilhão de células, a partir da célula original, como no caso da espécie humana. Verifica-se, portanto, que os processos reducionais e conservativos são fundamentais na transmissão das características hereditárias.
Mitose
Conceito
É o processo pelo qual é construído uma cópia exata de cada cromossomo, a informação genética é replicada e distribuída eqüitativamente aos 2 produtos finais. As características básicas da mitose são: a) Distribuição eqüitativa e conservativa do número de cromossomos. b) Distribuição eqüitativa e conservativa da informação genética.
Descrição das Fases
A - Intérfase Na intérfase o núcleo apresenta um contorno nítido pela presença da membrana nuclear. Os cromossomos estão invisíveis devido ao índice de refração ser igual a da cariolinfa (suco nuclear) e a problemas tinturiais. Os cromossomos começam a se diferenciar engrossando-se e tornando-se mais visível. O engrossamento se dá em parte pela espiralização e em parte pelo acúmulo de uma substância protéica denominada matriz (O cromossomo aumenta o diâmetro e diminui o tamanho). Ocorre a divisão longitudinal do cromossomo e replicação semi-conservativa da informação genética (DNA).
B - Prófase Na prófase os cromossomos tornam-se mais espiralados, encurtando-se, aumentando o diâmetro e individualizando-se. Em preparações fixadas e coradas o cromossomo parece ser sólido e oval ou assemelha-se a um bastão. As cromátides já podem ser observadas no final da prófase. Elas mantêm-se unidas pelo centrômero, o qual se liga às fibras do fuso cromático. A membrana nuclear desaparece e os centríolos migram para os pólos.
C - Metáfase Há formação da placa equatorial, ou seja os cromossomos se dispõe na posição mediana da célula, possibilitanto a distribuição equitativa da informação genética. Os cromossomos estão bem individualizados e fortemente condensados. Essa fase é adequada para se fazer contagem de cromossomos e verificação dealterações estruturais grosseiras. As linhas do fuso surgem em forma de linhas centrais (ou contínuas) ou de linhas cromossomais.
D- Anáfase Ocorre a separação das cromátides que se dá inicialmente pelo centrômero e posteriormente ao longo de todo cromossomo. Cada unidade tem seu próprio centrômero. Esta é a fase mais adequada para visualizar a posição do centrômero .
E - Telófase A membrana nuclear é reconstituída em torno de cada núcleo-filho e os nucléolos reaparecem. A citocinese ocorre.
Meiose
Conceito A meiose é o processo que se verifica tanto nos órgãos sexuais masculinos quanto femininos. Através da meiose os gametas ficam com o número de cromossomos reduzidos à metade, ao estado denominado haplóide. Quando o gameta de origem materna se une ao gameta de origem paterna o número de cromossomos característico da espécie é restabelecido.
A meiose é um processo divisional, que, a partir de uma célula inicial com 2n cromossomos, leva à formação de células filhas com metade desse número. Também é definida como o processo que envolve duas divisões sucessivas do núcleo, acompanhada de uma só redução no número de cromossomos. A divisão meiótica compreende 2 fases: a reducional (meiose I) e a equacional (meiose II).
Descrição das Fases
A - Intérfase Na intérfase o núcleo apresenta-se bem individualizado pela presença da membrana nuclear. Os cromossomos começam a se diferenciar, engrossando-se e tornando-se mais visível. Ocorre a divisão longitudinal do cromossomo e replicação da informação genética, no modelo semi-consevativo.
B - Prófase I A prófase I é estudada através de seus vários estágios dados a seguir.
B.2. Zigóteno Durante o estágio de zigóteno cada cromossomo parece atrair o outro para um contato íntimo, à semelhança de um ziper. Este pareamento, denominado sinapse, é altamente específico e ocorre entre todas as seções homólogas dos cromossomos, mesmo se essas seções estão presentes em outros cromossomos não homólogos.
Sabemos que para cada cromossomo contribuído por um pai, existe um que lhe e homólogo, contribuído pelo outro progenitor. São esses os cromossomos que se pareiam.
B.3. Paquíteno O paquíteno é um estágio de progressivo encurtamento e enrolamento dos cromossomos que ocorre após o pareamento no zigóteno ter sido completado. No paquíteno as duas cromátides irmãs de um cromossomo homólogo estão associados às duas cromátides irmãs de seus homólogos. Esse grupo de 4 cromátides é conhecido como bivalente ou tétrades e uma série de troca de material genético ocorre entre cromátides não irmãs de homólogos (Crossing-over)
O paquíteno é também o estágio em que uma estrutura chamada de complexo sinaptonêmico pode ser observada entre os cromossomos através de microscópios eletrônicos. Ele aparece como faixas de 3 componentes longitudinais organizados em 2 camadas laterais de elementos densos e a central constituída basicamente de proteínas. O complexo permite que os cromossomos estejam em um contato mais íntimo e mais preciso.
B.4. Diplóteno No estágio de diplóteno cada cromossomo age como se repelisse o pareamento íntimo estabelecido entre os homólogos, especialmente próximo ao centrômero. Talvez isso ocorra devido ao desaparecimento da força de atração existente no paquíteno ou devido a uma nova força de repulsão que se manifesta.
A separação é impedida em algumas regiões, em lugares onde os filamentos se cruzam. Essas regiões ou pontos de intercâmbios genéticos, são conhecidas por quiasmas. Uma tétrade pode apresentar vários quiasmas dando figuras em configuração de V, X, O ou de correntes. Em muitos organismos suas posições e número parecem ser constantes para um particular cromossomo.
B.5. Diacinese Na diacinese a espiralização e contração dos cromossomos continua até eles se apresentarem como corpúsculos grossos e compactos. Durante a fase final desse estágio ou início da metáfase I, a membrana nuclear dissolve e os bivalentes acoplam-se, através de seus centrômeros, às fibras do fuso cromático. O nucleolo desaparece. O número de quiasma é reduzido devido a terminalização. A terminalização é um processo pelo qual, dado o encurtamento dos filamentos e a força de repulsão existente entre homólogos, os quiasmas vão sendo empurrados para alguns se escaparem por completo.
C - Metáfase I Nessa fase os bivalentes orientam-se aleatoriamente sobre a placa equatorial. Em geral os cromosssomos estão mais compactos que aqueles da fase correspondente da mitose e permitem uma contagem das unidades que estão presentes na parte mediana da célula.
D - Anáfase I Nessa fase inicia a movimentação das díades para pólos opostos, mas não há rompimento dos centrômeros. Nesse caso há movimento de cromossomos inteiros para pólos opostos e, consequentemente, essa fase reduz o número de cromossomos a metade
Essa fase é adequada ao estudo da posição dos centrômeros, pois as cromátides se abrem permanecendo unidas apenas pelos centrômeros e assim apresentando especiais. Nessa fase ainda ocorre algumas quebras de quiasmas que ainda restaram.
E - Telófase I Como na mitose os dois grupos formados ou aglomerados nos pólos passam por uma série de transformações: A identidade das díades começa a desaparecer, os filamentos tornam-se a desespiralizar (perda de visibilidade). Os núcleos não chegam ao repouso total, pois logo após começa a se preparar para a segunda divisão meiótica. Variando de acordo com o organismo, uma divisão do citoplasma pode ou não se verificar imediatamente após a separação dos dois núcleos.
F - Intercinese Fase que vai desde o final da primeira divisão até o início da segunda divisão. Essa fase difere da intérfase por não ocorrer a replicação da informação genética, tal como ocorre na intérfase.
G - Prófase II Essa fase é muito mais simples que a prófase I, pois os cromossomos não passam por profundas modificações na intercinese. Ocorre os seguintes fenômenos: desaparecimento da membrana nuclear; formação do fuso cromático e movimentação das díades para a placa equatorial.
H - Metáfase II Os cromossomos, agora em número reduzido à metade, alinham-se na placa equatorial da célula.
I- Anáfase II Os centrômeros se dividem permitindo a separação das cromátides irmãs migrarem para pólos opostos. Essas cromátides poderão carregar informação genética diferente caso tenha ocorrido permuta durante a prófase I (paquíteno).
J - Telófase II - Os cromossomos atingindo os pólos se aglomeram e as novas células são reconstituídas. Após a citocinese forma-se um grupo de 4 células haplóides denominadas de tétrades. Cada célula dessa meiose irá conter um grupo de cromossomos não homólogos.
No mundo de hoje, é comum pensarmos em um país como sendo uma porção de terra delimitada espacialmente das demais pela presença de uma fronteira. Vamos pensar no caso do Brasil. Estamos rodeados de mar em metade do nosso território e, na outra metade, fazemos fronteira terrestre com outros nove países da America do Sul. Em suas fronteiras, todos os países instalam uma alfândega, que é uma repartição governamental de controle do movimento de entradas e saídas das pessoas e de mercadorias para o exterior ou deles provenientes.
Com as células não é diferente. Cada uma delas tem uma “área de fronteira”, representada pela membrana plasmática e, nesta área, as células também possuem o seu “posto alfandegário”, as proteínas. Assim como nas aduanas das fronteiras entre os países, essas proteínas são as responsáveis pelo reconhecimento de substâncias vindas de dentro ou de fora da célula como, por exemplo, hormônios.
O trabalho realizado por uma célula é semelhante ao que acontece em uma fábrica, como a de televisores, por exemplo. Através de portões, dá-se a entrada de diversos tipos de peças destinadas as linhas de montagem. Para a fabricação e a montagem dos aparelhos, são necessários energia e operários habilitados. É preciso, ainda, um setor de embalagem para preparar a expedição do que é produzido e uma diretoria para comandar todo o complexo fabril e manter o relacionamento com o mundo externo. Tudo dentro dos limites representados pelo muro da fábrica.
A célula possui setores semelhantes aos de uma fábrica. Um limite celular, representado pela membrana plasmática, separa o conteúdo da célula, o citoplasma, do meio externo. O citoplasma, constituído por organóides e hialoplasma (ou citosol), um material viscoso representa o setor produtivo. Um núcleo contendo o material genético representa “a diretoria” da célula.
Os limites da célula viva
Uma célula viva é um compartimento microscópico, isolado do ambiente por pelo menos uma barreira: a membrana plasmática. Está é uma película extremamente fina e delicada, que exerce severa “fiscalização” sobre todas as substâncias e partículas que entram e saem da célula.
Dada a relativa fragilidade da membrana plasmática, a maioria das células apresenta algum tipo de envoltório que dá proteção e suporte físico à membrana. Entre esses envoltórios destacam-se o glicocálix, presente na maioria das células animais, e a parede celulósica, presente em células de plantas e de algumas algas.
Glicocálix
Se isolássemos uma célula de nosso corpo, notaríamos que ela esta envolta por uma espécie de malha feita de moléculas de glicídios (carboidratos) frouxamente entrelaçadas. Esta malha protege a célula como uma vestimenta: trata-se doglicocálix (do grego glykys, doce, açúcar, e do latim calyx, casca envoltório).
Diversas funções têm sido sugeridas para o glicocálix. Acredita-se que, além de ser uma proteção contra agressões físicas e químicas do ambiente externo, ele funcione como uma malha de retenção de nutrientes e enzimas, mantendo um microambiente adequado ao redor de cada célula. Confere às células a capacidade de se reconhecerem, uma vez que células diferentes têm glicocálix formado por glicídios diferentes e células iguais têm glicocálix formado por glicídios iguais.
As células vegetais possuem um envoltório externo, espesso e relativamente rígido: a parede celulósica, também chamada membrana esquelética celulósica;
Paredes celulósicas primárias e secundária
Células vegetais jovens apresentam uma parede celulósica fina e flexível, denominada parede primária.
A parede primária é elástica, de modo a permitir o crescimento celular. Depois que a célula cresceu e atingiu o tamanho e a forma definitivos, forma-se a parede secundária, mais espessa e rígida. A celulose que constitui a parede secundária é secretada através da membrana plasmática, e se deposita entre esta e a superfície interna da parede primária, na qual adere fortemente.
Constituição da parede celulósica
A parede das células vegetais é constituída por longas e resistentes microfibrilas do polissacarídeo celulose. As microfibrilas celulósicas se mantém unidas por meio de uma matriz formada por glicoproteínas (proteínas ligadas a açucares), hemicelulose e pectina (polissacarídeos).
A estrutura molecular da parede celulósica aplica o mesmo princípio do concreto armado, no qual longas e resistentes varetas de ferro estão mergulhadas em uma argamassa de cimento e pedras.
Na parede celular, as microfibrilas de celulose correspondem às varetas de ferro do concreto, enquanto as glicoproteínas e os polissacarídeos da matriz correspondem à argamassa.
Membrana celular
(ou membrana plasmática ou membrana citoplasmática ou plasmalema)
Toda a célula, seja procarionte ou eucarionte, apresenta uma membrana que isola do meio exterior: a membrana plasmática. A membrana plasmática é tão fina (entre 6 a 9 nm) que os mais aperfeiçoados microscópios ópticos não conseguiram torná-la visível. Foi somente após o desenvolvimento da microscopia eletrônica que a membrana plasmática pode ser observada. Nas grandes ampliações obtidas pelo microscópio eletrônico, cortes transversais da membrana aparecem como uma linha mais clara entre duas mais escuras, delimitando o contorno de cada célula.
Constituição química da membrana plasmática
Estudos com membranas plasmáticas isoladas revelam que seus componentes mais abundantes são fosfolipídios, colesterol e proteínas. É por isso que se costumam dizer que as membranas plasmáticas têm constituição lipoprotéica.
A organização molecular da membrana plasmática
Uma vez identificados os fosfolipídios e as proteínas como os principais componentes moleculares da membrana, os cientistas passaram a investigar como estas substâncias estavam organizadas.
O modelo do mosaico fluído
A disposição das moléculas na membrana plasmática foi elucidada recentemente, sendo que os lipídios formam uma camada dupla e contínua, no meio da qual se encaixam moléculas de proteína. A dupla camada de fosfolipídios é fluida, de consistência oleosa, e as proteínas mudam de posição continuamente, como se fossem peças de um mosaico. Esse modelo foi sugerido por dois pesquisadores, Singer e Nicholson, e recebeu o nome de Modelo Mosaico Fluido.
Os fosfolipídios têm a função de manter a estrutura da membrana e as proteínas têm diversas funções. As membranas plasmáticas de um eucariócitos contêm quantidades particularmente grande de colesterol. As moléculas de colesterol aumentam as propriedades da barreira da bicamada lipídica e devido a seus rígidos anéis planos de esteróides diminuem a mobilidade e torna a bicamada lipídica menos fluida.
Funções das proteínas na membrana plasmática
As proteínas da membrana plasmática exercem grandes variedades de funções: atuam preferencialmente nos mecanismos de transporte, organizando verdadeiros túneis que permitem a passagem de substâncias para dentro e para fora da célula, funcionam como receptores de membrana, encarregadas de receber sinais de substâncias que levam alguma mensagem para a célula, favorecem a adesão de células adjacentes em um tecido, servem como ponto de ancoragem para o citoesqueleto.
Proteínas de adesão: em células adjacentes, as proteínas da membrana podem aderir umas às outras.
Proteínas que facilitam o transporte de substâncias entre células.
Proteínas de reconhecimento: determinadas glicoproteínas atuam na membrana como um verdadeiro “selo marcador”, sendo identificadas especificamente por outras células.
Proteínas receptoras de membrana.
Proteínas de transporte: podem desempenhar papel na difusão facilitada, formando um canal por onde passam algumas substâncias, ou no transporte ativo, em que há gasto de energia fornecida pela substância ATP. O ATP (adenosina trifosfato) é uma molécula derivada de nucleotídeo que armazena a energia liberada nos processos bioenergéticos que ocorrem nas células (respiração aeróbia, por exemplo). Toda vez que é necessária energia para a realização de uma atividade celular (transporte ativo, por exemplo) ela é fornecida por moléculas de ATP.
Proteínas de ação enzimática: uma ou mais proteínas podem atuar isoladamente como enzima na membrana ou em conjunto, como se fossem parte de uma “linha de montagem” de uma determinada via metabólica.
Proteínas com função de ancoragem para o citoesqueleto.
Transporte pela Membrana Plasmática
A capacidade de uma membrana de ser atravessada por algumas substâncias e não por outras define suapermeabilidade. Em uma solução, encontram-se o solvente (meio líquido dispersante) e o soluto(partícula dissolvida). Classificam-se as membranas, de acordo com a permeabilidade, em 4 tipos:
a) Permeável: permite a passagem do solvente e do soluto;
b) Impermeável: não permite a passagem do solvente nem do soluto;
c) Semipermeável: permite a passagem do solvente, mas não do soluto;
d) Seletivamente permeável: permite a passagem do solvente e de alguns tipos de soluto.
Nessa última classificação se enquadra a membrana plasmática.
A passagem aleatória de partículas sempre ocorre de um local de maior concentração para outro de concentração menor(a favor do gradiente de concentração). Isso se dá até que a distribuição das partículas seja uniforme. A partir do momento em que o equilíbrio for atingido, as trocas de substâncias entre dois meios tornam-se proporcionais.
A passagem de substâncias através das membranas celulares envolve vários mecanismos, entre os quais podemos citar:
Ocorre sempre a favor do gradiente, no sentido de igualar as concentrações nas duas faces da membrana. Não envolve gasto de energia.
Osmose
A água se movimenta livremente através da membrana, sempre do local de menor concentração de soluto para o de maior concentração. A pressão com a qual a água é forçada a atravessar a membrana é conhecida por pressão osmótica.
A osmose não é influenciada pela natureza do soluto, mas pelo número de partículas. Quando duas soluções contêm a mesma quantidade de partículas por unidade de volume, mesmo que não sejam do mesmo tipo, exercem a mesma pressão osmótica e são isotônicas. Caso sejam separadas por uma membrana, haverá fluxo de água nos dois sentidos de modo proporcional.
Quando se comparam soluções de concentrações diferentes, a que possui mais soluto e, portanto, maior pressão osmótica é chamada hipertônica, e a de menor concentração de soluto e menor pressão osmótica é hipotônica. Separadas por uma membrana, há maior fluxo de água da solução hipotônica para a hipertônica, até que as duas soluções se tornem isotônicas.
A osmose pode provocar alterações de volume celular. Uma hemácia humana é isotônica em relação a uma solução de cloreto de sódio a 0,9% (“solução fisiológica”). Caso seja colocada em um meio com maior concentração, perde água e murcha. Se estiver em um meio mais diluído (hipotônico), absorve água por osmose e aumenta de volume, podendo romper (hemólise).
Se um paramécio é colocado em um meio hipotônico, absorve água por osmose. O excesso de água é eliminado pelo aumento de freqüência dos batimentos do vacúolo pulsátil (ou contrátil).
Protozoários marinhos não possuem vacúolo pulsátil, já que o meio externo é hipertônico.
A pressão osmótica de uma solução pode ser medida em um osmômetro. A solução avaliada é colocada em um tubo de vidro fechado com uma membrana semipermeável, introduzido em um recipiente contendo água destilada, como mostra a figura.
Por osmose, a água entra na solução fazendo subir o nível líquido no tubo de vidro. Como no recipiente há água destilada, a concentração de partículas na solução será sempre maior que fora do tubo de vidro. Todavia, quando o peso da coluna líquida dentro do tubo de vidro for igual à força osmótica, o fluxo de água cessa. Conclui-se, então, que a pressão osmótica da solução é igual à pressão hidrostática exercida pela coluna líquida.
Transporte Passivo
Difusão
Consiste na passagem das moléculas do soluto, do local de maior para o local de menor concentração, até estabelecer um equilíbrio. É um processo lento, exceto quando o gradiente de concentração for muito elevado ou as distâncias percorridas forem curtas. A passagem de substâncias, através da membrana, se dá em resposta ao gradiente de concentração.
Difusão Facilitada
Certas substâncias entram na célula a favor do gradiente de concentração e sem gasto energético, mas com uma velocidade maior do que a permitida pela difusão simples. Isto ocorre, por exemplo, com a glicose, com alguns aminoácidos e certas vitaminas. A velocidade da difusão facilitada não é proporcional à concentração da substância. Aumentando-se a concentração, atinge-se um ponto de saturação, a partir do qual a entrada obedece à difusão simples. Isto sugere a existência de uma molécula transportadora chamada permease na membrana. Quando todas as permeases estão sendo utilizadas, a velocidade não pode aumentar. Como alguns solutos diferentes podem competir pela mesma permease, a presença de um dificulta a passagem do outro.
Osmose na célula vegetal
Como já foi dito anteriormente, se duas soluções se mantêm separadas por uma membrana semipermeável, ocorre fluxo de água da solução mais diluída para a mais concentrada. Essa difusão do solvente chama-se osmose.
Quando uma célula vegetal está em meio hipotônico, absorve água. Ao contrário da célula animal, ela não se rompe, pois é revestida pela parede celular ou membrana celulósica, que é totalmente permeável, mas tem elasticidade limitada, restringindo o aumento do volume da célula. Assim, a entrada de água na célula não depende apenas da diferença de pressão osmótica entre o meio extracelular e o meio intracelular (principalmente a pressão osmótica do suco vacuolar, líquido presente no interior do vacúolo da célula vegetal). Depende, também, da pressão contrária exercida pela parede celular. Essa pressão é conhecida por pressão de turgescência, ou resistência da membrana celulósica à entrada de água na célula.
As Relações Hídricas da Célula Vegetal
A osmose na célula vegetal depende da pressão osmótica (PO) exercida pela solução do vacúolo, que também é chamada de sucção interna do vacúolo (Si). Podemos chamar a pressão osmótica ou sucção interna do vacúolo de força de entrada de água na célula vegetal.
Conforme a água entra na célula vegetal, a membrana celulósica sofre deformação e começa exercer força contrária à entrada de água na célula vegetal.
Essa força de resistência à entrada de água na célula vegetal é denominada pressão de Turgor ou Turgescência (PT) ou resistência da membrana celulósica (M).
Essa turgescência à entrada de água na célula vegetal pode ser chamada de força de saída de água da célula vegetal.
A diferença entre as forças de entrada e saída de água da célula vegetal é denominada de diferença de pressão de difusão DPD ou sucção celular (Sc).
Assim, temos:
DPD = PO - PT
ou
Sc = Si - M
A Célula Vegetal em Meio Isotônico
Quando está em meio isotônico, a parede celular não oferece resistência à entrada de água, pois não está sendo distendida (PT = zero). Mas, como as concentrações de partículas dentro e fora da célula são iguais, a diferença de pressão de difusão é nula.
A célula está flácida. A força de entrada (PO) de água é igual à força de saída (PT) de água da célula.
Como DPD = PO – PT DPD = zero
A Célula Vegetal em Meio Hipotônico
Quando o meio é hipotônico, há diferença de pressão osmótica entre os meios intra e extra- celular. À medida que a célula absorve água, distende a membrana celulósica, que passa a oferecer resistência à entrada de água. Ao mesmo tempo, a entrada de água na célula dilui o suco vacuolar, cuja pressão osmótica diminui. Em certo instante, a pressão de turgescência(PT) se iguala à pressão osmótica(PO), tornando a entrada e a saída de água proporcionais.
PO = PT, portanto
DPD = PO – PT DPD =zero
A célula está túrgida.
A Célula Vegetal em Meio Hipertônico
Quando a célula está em meio hipertônico, perde água e seu citoplasma se retrai, deslocando a membrana plasmática da parede celular. Comonão há deformação da parede celular, ela não exerce pressão de turgescência (PT = zero). Nesse caso:
DPD = PO
Diz-se que a célula está plasmolisada. Se a célula plasmolisada for colocada em meio hipotônico, absorve água e retorna à situação inicial. O fenômeno inverso à plasmólise chama-se deplasmólise ou desplasmolise.
Quando a célula fica exposta ao ar, perde água por evaporação e se retrai. Nesse caso, o retraimento é acompanhado pela parede celular. Retraída, a membrana celulósica não oferece resistência à entrada de água. Pelo contrário, auxilia-a. A célula está dessecada ou murcha.
Como a parede celular está retraída, exerce uma pressão no sentido de voltar à situação inicial e acaba favorecendo a entrada de água na célula vegetal. Assim, temos uma situação contrária da célula túrgida e o valor de (PT) ou (M) é negativo.
A expressão das relações hídricas da célula vegetal ficará assim:
DPT = PO – (–PT)
DPT = PO + PT
O gráfico a seguir, conhecido por diagrama de Höfler, ilustra as variações de pressões expostas anteriormente.
Na situação A, a célula está túrgida (PO = PT e DPD = zero). Em B, PT = zero e DPD = PO, a célula está plasmolisada. Se a parede celular se retrai, a pressão de turgescência passa a auxiliar a entrada de água (DPD > PO), como indicado na situação C, de uma célula dessecada.
Transporte Ativo
Neste processo, as substâncias são transportadas com gasto de energia, podendo ocorrer do local de menor para o de maior concentração (contra o gradiente de concentração). Esse gradiente pode ser químico ou elétrico, como no transporte de íons. O transporte ativo age como uma “porta giratória”. A molécula a ser transportada liga-se à molécula transportadora (proteína da membrana) como uma enzima se liga ao substrato. A molécula transportadora gira e libera a molécula carregada no outro lado da membrana. Gira, novamente, voltando à posição inicial. A bomba de sódio e potássio liga-se em um íon Na+ na face interna da membrana e o libera na face externa. Ali, se liga a um íon K+ e o libera na face externa. A energia para o transporte ativo vem da hidrólise do ATP.
Muitas membranas pegam carona com outras substâncias ou íons, para entrar ou sair das células, utilizando o mesmo “veículo de transporte". É o que ocorre por exemplo, com moléculas de açúcar que ingressam nas células contra o seu gradiente de concentração. Como vimos no item anterior, a bomba de sódio/potássio expulsa íons de sódio da célula, ao mesmo tempo que faz os íons potássio ingressarem, utilizando a mesma proteína transportadora (o mesmo canal iônico), com gasto de energia. Assim, a concentração de íons de sódio dentro da célula fica baixa, o que induz esses íons a retornarem para o interior celular.
Ao mesmo tempo, moléculas de açúcar, cuja concentração dentro da célula é alta, aproveitam o ingresso de sódio e o “acompanham” para o meio intracelular.
Esse transporte simultâneo, ocorre com a participação de uma proteína de membrana “cotransportadora” que, ao mesmo tempo em que favorece o retorno de íons de sódio para a célula, também deixa entrar moléculas de açúcar cuja concentração na célula é elevada.
Note que a energia utilizada nesse tipo de transporte é indiretamente proveniente da que é gerada no transporte ativo de íons de sódio/potássio.
Enquanto que a difusão simples e facilitada e o transporte ativo são mecanismos de entrada ou saída para moléculas e ions de pequenas dimensões, as grandes moléculas ou até partículas constituídas por agregados moleculares são transportadas através de outros processos.
Este processo permite o transporte de substâncias do meio extra- para o intracelular, através de vesículas limitadas por membranas, a que se dá o nome de vesículas de endocitose ou endocíticas. Estas são formadas por invaginação da membrana plasmática, seguida de fusão e separação de um segmento da mesma.
Há três tipos de endocitose: pinocitose, fagocitose e endocitose mediada.
Pinocitose
Neste caso, as vesículas são de pequenas dimensões e a célula ingere moléculas solúveis que, de outro modo, teriam dificuldades em penetrar a membrana.
O mecanismo pinocítico envolve gasto de energia e é muito seletivo para certas substâncias, como os sais, aminoácidos e certas proteínas, todas elas solúveis em água.
Este processo, que ocorre em diversas células, tem uma considerável importância para a Medicina: o seu estudo mais aprofundado pode permitir o tratamento de grupos de células com substâncias que geralmente não penetram a membrana citoplasmática (diluindo-as numa solução que contenha um indutor de pinocitose como, por exemplo, a albumina, fazendo com que a substância siga a albumina até ao interior da célula e aí desempenhe a sua função).
Endocitose mediada
Se a invaginação da membrana for desencadeada pela ligação de uma determinada substância a um constituinte específico da membrana trata-se de um processo de endocitose mediada e chama-se a esse constituinte receptor.
Para entrar na célula deste modo é necessário que a membrana possua receptores específicos para a substância em questão.
Este mecanismo é utilizado por muitos vírus (como o HIV, por exemplo) e toxinas para penetrar na célula dado que ao longo do tempo foram desenvolvendo uma complementaridade com os receptores.
Este processo é também importante para a Medicina, pois foram introduzidos em medicamentos usados para destruir células tumorais fragmentos que se ligam aos receptores membranares específicos das células que se pretende destruir.
Fagocitose
Este processo é muito semelhante à pinocitose, sendo a única diferença o fato de o material envolvido pela membrana não estar diluído.
Enquanto que a pinocitose é um processo comum a quase todas as células eucarióticas, muitas das células pertencentes a organismos multicelulares não efetuam fagocitose, sendo esta efetuada por células específicas. Nos protistas a fagocitose é freqüentemente uma das formas de ingestão de alimentos.
Os glóbulos brancos utilizam este processo para envolver materiais estranhos como bactérias ou até células danificadas. Dentro da célula fagocítica, enzimas citoplasmáticas são secretadas para a vesícula e degradam o material até este ficar com uma forma inofensiva.
Exocitose
Enquanto que na endocitose as substâncias entram nas células, existe um processo inverso: a exocitose.
Depois de endocitado, o material sofre transformações sendo os produtos resultantes absorvidos através da membrana do organito e permanecendo o que resta na vesícula de onde será posteriormente exocitado.
A exocitose permite, assim, a excreção e secreção de substâncias e dá-se em três fases: migração, fusão e lançamento. Na primeira, as vesículas de exocitose deslocam-se através do citoplasma. Na segunda, dá-se a fusão da vesícula com a membrana celular. Por último, lança-se o conteúdo da vesícula no meio extracelular.
Citosol, Citoplasma ou hialoplasma
Os primeiros citologistas acreditavam que o interior da célula viva era preenchido por um fluído homogêneo e viscoso, no qual estava mergulhado o núcleo. Esse fluido recebeu o nome de citoplasma (do grego kytos, célula, e plasma, aquilo que dá forma, que modela).
Hoje se sabe que o espaço situado entre a membrana plasmática e o núcleo é bem diferente do que imaginaram aqueles citologistas pioneiros. Além da parte fluida, o citoplasma contémbolsas e canais membranosos e organelas ou orgânulos citoplasmáticos, que desempenham funções específicas no metabolismo da célula eucarionte.
O fluido citoplasmático é constituído principalmente por água, proteínas, sais minerais e açucares. No citosol ocorre a maioria das reações químicas vitais, entre elas a fabricação das moléculas que irão constituir as estruturas celulares. É também no citosol que muitas substâncias de reserva das células animais, como as gorduras e o glicogênio, ficam armazenadas.
Na periferia do citoplasma, o citosol é mais viscoso, tendo consistência de gelatina mole. Essa região é chamada de ectoplasma (do grego, ectos, fora). Na parte mais central da célula situa-se o endoplasma (do grego, endos, dentro), de consistência mais fluida.
Célula Vegetal
Ciclose
O citosol encontra-se em contínuo movimento, impulsionado pela contração rítmica de certos fios de proteínas presentes no citoplasma, em um processo semelhante ao que faz nossos músculos se movimentarem. Os fluxos de citosol constituem o que os biólogos denominam ciclose. Em algumas células, a ciclose é tão intensa que há verdadeiras correntes circulatórias internas. Sua velocidade aumenta com elevação da temperatura e diminui em temperaturas baixas, assim como na falta de oxigênio.
Movimento amebóide
Alguns tipos de células têm a capacidade de alterar rapidamente a consistência de seu citosol, gerando fluxos internos que permitem à célula mudar de forma e se movimentar. Esse tipo de movimento celular, presente em muitos protozoários e em alguns tipos de células de animais multicelulares, é chamado movimento amebóide.
Como são os organóides?
Alguns dos organóides (também chamados de orgânulos ou organelas) do citoplasma são membranosos, isto é, são revestidos por uma membrana lipoprotéica semelhante a membrana plasmática. Estamos nos referindo aretículo endoplasmático, mitocôndrias, sistema golgiense (ou complexo de golgi),lisossomos, peroxissomos, glioxissomos, cloroplastos e vacúolos. Os organóides não membranosos são os ribossomos e os centríolos.
O retículo endoplasmático
Tipos de retículo
O citoplasma das células eucariontes contém inúmeras bolsas e tubos cujas paredes têm uma organização semelhante à da membrana plasmática. Essas estruturas membranosas formam uma complexa rede de canais interligados, conhecida pelo nome de retículo endoplasmático. Pode-se distinguir dois tipos de retículo: rugoso (ou granular) e liso (ou agranular).
Retículo endoplasmático rugoso (RER) e liso (REL)
O retículo endoplasmático rugoso (RER), também chamado de ergastoplasma, é formado por sacos achatados, cujas membranas têm aspecto verrugoso devido à presença de grânulos – osribossomos – aderidos à sua superfície externa (voltada para o citosol). Já oretículo endoplasmático liso (REL) é formado por estruturas membranosas tubulares, sem ribossomos aderidos, e, portanto, de superfície lisa.
Os dois tipos de retículo estão interligados e a transição entre eles é gradual. Se observarmos o retículo endoplasmático partindo do retículo rugoso em direção ao liso, vemos as bolsas se tornarem menores e a quantidade de ribossomos aderidos diminuir progressivamente, até deixar de existir.
Funções do retículo endoplasmático
O retículo endoplasmático atua como uma rede de distribuição de substâncias no interior da célula. Nolíquido existente dentro de suas bolsas e tubos, diversos tipos de substâncias se deslocam sem se misturar com o citosol.
Produção de lipídios
Uma importante função de retículo endoplasmático liso é a produção de lipídios. A lecitina e o colesterol, por exemplo, os principais componentes lipídicos de todas as membranas celulares são produzidos no REL. Outros tipos de lipídios produzidos no retículo liso são os hormônios esteróides, entre os quais estão a testosterona e os estrógeno, hormônios sexuais produzidos nas células das gônadas de animais vertebrados.
Desintoxicação
O retículo endoplasmático liso também participa dos processos de desintoxicação do organismo. Nas células do fígado, o REL, absorve substâncias tóxicas, modificando-as ou destruindo-as, de modo a não causarem danos ao organismo. É a atuação do retículo das células hepáticas que permite eliminar parte doálcool, medicamentos e outras substâncias potencialmente nocivas que ingerimos.
Armazenamento de substâncias
Dentro das bolsas do retículo liso também pode haver armazenamento de substâncias. Os vacúolos das células vegetais, por exemplo, são bolsas membranosas derivadas do retículo que crescem pelo acúmulo de soluções aquosas ali armazenadas.
Produção de proteínas
O retículo endoplasmático rugoso, graças à presença dos ribossomos, é responsável por boa parte da produção de proteínas da célula. As proteínas fabricadas nos ribossomos do RER penetram nas bolsas e se deslocam em direção ao aparelho de Golgi, passando pelos estreitos e tortuosos canais co retículo endoplasmático liso.
Os vacúolos
Os vacúolos das células vegetais são interpretados com regiões expandidas do retículo endoplasmático. Em células vegetais jovens observam-se algumas dessas regiões, formando pequenos vacúolos isolados um do outro. Mas, à medida que a célula atinge a fase adulta, esses pequenos vacúolos se fundem, formando-se um único, grande e central, com ramificações que lembram sua origem reticular. A expansão do vacúolo leva o restante do citoplasma a ficar comprimido e restrito à porção periférica da célula. Além disso, a função do vacúolo é regular as trocas de água que ocorrem na osmose.
Em protozoários de água doce existem vacúolos pulsáteis (também chamados contráteis), que exercem o papel de reguladores osmóticos. O ingresso constante de água, do meio para o interior da célula, coloca em risco a integridade celular. A remoção contínua dessa água mantém constante a concentração dos líquidos celulares e evita riscos de rompimento da célula. É um trabalho que consome energia.
Aparelho de Golgi
A denominação aparelho ou complexo de Golgi é uma homenagem ao citologista italiano Camilo Golgi, que, em 1898, descobriu essa estrutura citoplasmática. Ao verificar que certas regiões com citoplasma celular se coravam por sais de ósmio de prata, Golgi imaginou que ali deveria existir algum tipo de estrutura, posteriormente confirmada pela microscopia eletrônica.
Dictiossomos
O aparelho de Golgi está presente em praticamente todas as células eucariontes, e consiste de bolsas membranosas achatadas, empilhadas como pratos. Cada uma dessas pilhas recebe o nome dedictiossomo. Nas células animais, os dictiossomos geralmente se encontram reunidos em um único local, próximo ao núcleo. Nas células vegetais, geralmente há vários dictiossomos espalhados pelo citoplasma.
Funções do aparelho de Golgi
O aparelho de Golgi atua como centro de armazenamento, transformação, empacotamento e remessa de substâncias na célula. Muitas das substâncias que passam pelo aparelho de Golgi serão eliminadas da célula, indo atuar em diferentes partes do organismo. É o que ocorre, por exemplo, com asenzimas digestivasproduzidas e eliminadas pelas células de diversos órgãos (estômago, intestino, pâncreas etc.). Outras substâncias, tais como omuco que lubrifica as superfícies internas do nosso corpo, também são processadas e eliminadas pelo aparelho de Golgi. Assim, o principal papel dessa estrutura citoplasmática é a eliminação de substâncias que atuam fora da célula, processo genericamente denominado secreção celular.
Secreção de enzimas digestivas
As enzimas digestivas do pâncreas, por exemplo, são produzidas no RER e levadas até as bolsas do aparelho de Golgi, onde são empacotadas em pequenas bolsas, que se desprendem dos dictiossomos e se acumulam em um dos pólos da célula pancreática. Quando chega o sinal de que há alimento para ser digerido, as bolsas cheias de enzimas se deslocam até a membrana plasmática, fundem-se com ela e eliminam seu conteúdo para o meio exterior.
A produção de enzimas digestivas pelo pâncreas é apenas um entre muitos exemplos do papel do aparelho de Golgi nos processos de secreção celular. Praticamente todas as células do corpo sintetizam e secretam uma grande variedade de proteínas que atuam fora delas.
Formação do acrossomo do espermatozóide
O aparelho de Golgi desempenha um papel importante na formação dos espermatozóides. Estes contêm bolsas repletas de enzimas digestivas, que irão perfurar as membranas do óvulo e permitir a fecundação. A bolsa de enzimas do espermatozóide maduro, originada no aparelho de Golgi, é o acrossomo (do grego acros, alto, topo, e somatos, corpo), termo que significa “corpo localizado no topo do espermatozóide”.
Formação da lamela média em células vegetais
Nas células vegetais o complexo de Golgi participa ativamente da formação da lamela média, a primeira membrana que separa duas células recém-originadas na divisão celular. Os dictiossomos acumulam o polissacarídeo pectina, que é eliminado entre as células irmãs recém formadas, constituindo a primeira separação entre elas e, mais tarde, a lâmina que as mantém unidas.
Lisossomos
Estrutura e origem dos lisossomos
Os lisossomos (do grego lise, quebra, destruição) são bolsas membranosas que contêm enzimas capazes de digerir substâncias orgânicas. Com origem no aparelho de Golgi, os lisossomos estão presentes em praticamente todas as células eucariontes. As enzimas são produzidas no RER e migram para os dictiossomos, sendo identificadas e enviadas para uma região especial do aparelho de Golgi, onde são empacotadas e liberadas na forma de pequenas bolsas.
A digestão intracelular
Os lisossomos são organelas responsáveis pela digestão intracelular. As bolsas formadas nafagocitose e na pinocitose, que contêm partículas capturadas no meio externo, fundem-se aos lisossomos, dando origem a bolsas maiores, onde a digestão ocorrerá.
Vacúolos digestivos
As bolsas originadas pela fusão de lisossomos com fagossomos ou pinossomos são denominadas vacúolos digestivos; em seu interior, as substâncias originalmente presentes nos fagossomos ou pinossomos são digeridas pelas enzimas lisossômicas.
À medida que a digestão intracelular vai ocorrendo, as partículas capturadas pelas células são quebradas em pequenas moléculas que atravessam a membrana do vacúolo digestivo, passando para o citosol. Essas moléculas serão utilizadas na fabricação de novas substâncias e no fornecimento de energia à célula.
Eventuais restos do processo digestivo, constituídos por material que não foi digerido, permanecem dentro do vacúolo, que passa a ser chamado vacúolo residual.
Muitas célula eliminam o conteúdo do vacúolo residual para o meio exterior. Nesse processo, denominado clasmocitose, o vacúolo residual encosta na membrana plasmática e fundem-se com ela, lançando seu conteúdo para o meio externo.
Autofagia
Todas as células praticam autofagia (do grego autos, próprio, e phagein, comer), digerindo partes de si mesmas com o auxílio de seus lisossomos. Por incrível que pareça, a autofagia é uma atividade indispensável à sobrevivência da célula.
Em determinadas situações, a autofagia é uma atividade puramente alimentar. Quando um organismo é privado de alimento e as reservas do seu corpo se esgotam, as células, como estratégia de sobrevivência no momento de crise, passam a digerir partes de si mesmas.
No dia-a-dia da vida de uma célula, a autofagia permite destruir organelas celulares desgastadas e reaproveitar alguns de seus componentes moleculares.
O processo da autofagia se inicia com a aproximação dos lisossomos da estrutura a ser eliminada. Esta é cercada e envolvida pelos lisossomos, ficando contida em uma bolsa repleta de enzimas denominada vacúolo autofágico.
Através da autofagia, uma célula destrói e reconstrói seus constituintes centenas ou até milhares de vezes. Uma célula nervosa do cérebro, por exemplo, formada em nossa vida embrionária, tem todos os seus componentes (exceto os genes) com menos de um mês de idade. Uma célula de nosso fígado, a cada semana, digere e reconstrói a maioria de seus componentes.
Na silicose (“doença dos mineiros”), que ataca os pulmões ocorre a ruptura dos lisossomos de células fagocitárias (macrófagos), com conseqüente digestão dos componentes e morte celular.
Certas doenças degenerativas do organismo humano são creditadas a liberação de enzimas lisossômicas dentro da célula; isso aconteceria, por exemplo, em certos casos de artrite, doença das articulações ósseas.
Peroxissomos
Peroxissomos são bolsas membranosas que contêm alguns tipos de enzimas digestivas. Sua semelhança com os lisossomos fez com que fossem confundidos com eles até bem pouco tempo. Entretanto, hoje se sabe que os peroxissomos diferem dos lisossomos principalmente quanto ao tipo de enzimas que possuem.
Os peroxissomos, além de conterem enzimas que degradam gorduras e aminoácidos, têm também grandes quantidades da enzima catalase.
A catalase converte o peróxido de hidrogênio, popularmente conhecido como água oxigenada (H2O2), e água e gás oxigênio. A água oxigenada se forma normalmente durante a degradação de gorduras e de aminoácidos, mas, em grande quantidade, pode causar lesões à célula.
2 H2O2 + Enzima Catalase → 2 H2O + O2
Apesar das descobertas recentes envolvendo os peroxissomos, a função dessas organelas no metabolismo celular ainda é pouco conhecida. Entre outras funções, acredita-se que participem dos processos de desintoxicação da célula.
Glioxissomos
Em vegetais, as células das folhas e das sementes em germinação possuem peroxissomos especiais, conhecidos como glioxissomos. Nas células das folhas, essas estruturas atuam em algumas reações do processo de fotossíntese, relacionadas à fixação do gás carbônico. Nas sementes, essas organelas são importantes na transformação de ácidos graxos em substâncias de menortamanho, que acabarão sendo convertidas em glicose e utilizadas pelo embrião em germinação.
Citoesqueleto
Quando se diz que o hialoplasma é um fluido viscoso, fica-se com a impressão de que a célula animal tem uma consistência amolecida e que se deforma a todo o momento. Não é assim.
Um verdadeiro “esqueleto” formado por vários tipos de fibras de proteínas cruza a célula em diversas direções, dando-lhe consistência e firmeza.
Essa “armação” é importante se lembrarmos que a célula animal é desprovida de uma membrana rígida, como acontece com a membrana celulósica dos vegetais.
Entre as fibras protéicas componentes desse “citoesqueleto” podem ser citados os microfilamentos de actina, os microtúbulos e os filamentos intermediários.
Os microfilamentos são os mais abundantes, constituídos da proteína contráctilactina e encontrados em todas as células eucarióticas. São extremamente finos e flexíveis, chegando a ter 3 a 6 nm (nanômetros) de diâmetro, cruzando a célula em diferentes direções , embora concentram-se em maior número na periferia, logo abaixo da membrana plasmática.Muitos movimentos executados por células animais e vegetais são possíveis graças aos microfilamentos de actina.
Os microtúbulos, por sua vez, são filamentos mais grossos, de cerca de 20 a 25 nm de diâmetro, quefuncionam como verdadeiros andaimes de todas as células eucarióticas. São, como o nome diz, tubulares, rígidos e constituídos por moléculas de proteínas conhecidas como tubulinas, dispostas helicoidalmente, formando um cilindro. Um exemplo, desse tipo de filamento é o que organiza o chamado fuso de divisão celular. Nesse caso, inúmeros microtúbulos se originam e irradiam a partir de uma região da célula conhecida como centrossomo (ou centro celular) e desempenham papel extremamente importante na movimentação dos cromossomos durante a divisão de uma célula.
Outro papel atribuído aos microtúbulos é o de servir como verdadeiras “esteiras” rolantes que permitem o deslocamento de substâncias, de vesículas e de organóides como as mitocôndrias e cloroplastos pelo interior da célula. Isso é possível a partir da associação de proteínas motoras com os microtúbulos.
Essas proteínas motoras ligam-se de um lado, aos microtúbulos e, do outro, à substância ou organóide que será transportado, promovendo o seu deslocamento.
Por exemplo, ao longo do axônio (prolongamento) de um neurônio, as proteínas motoras conduzem, ao longo da “esteira” formada pelos microtúbulos, diversas substâncias para as terminações do axônio e que terão importante participação no funcionamento da célula nervosa.
Os filamentos intermediários são assim chamados por terem um diâmetro intermediário – cerca de 10 nm – em relação aos outros dois tipos de filamentos protéicos.
Nas células que revestem a camada mais externa da pele existe grande quantidade de um tipo de filamento intermediário chamado queratina. Um dos papeis desse filamento é impedir que as células desse tecido se separem ou rompam ao serem submetidas, por exemplo, a um estiramento.
Além de estarem espalhadas pelo interior das células, armando-as, moléculas de queratina promovem uma “amarração” entre elas em determinados pontos, o que garante a estabilidade do tecido no caso da ação de algum agente externo que tente separá-las. Esse papel é parecido ao das barras de ferro que são utilizadas na construção de uma coluna de concreto. Outras células possuem apreciável quantidade de outros filamentos intermediários. É o caso das componentes dos tecidos conjuntivos e dos neurofilamentos encontrados no interior das células nervosas.
Resumo
Os centríolos
Os centríolos são organelas NÃO envolvidas por membrana e que participam do progresso de divisão celular. Nas células de fungos complexos, plantas superiores (gimnospermas e angiospermas) e nematóides não existem centríolos. Eles estão presentes na maioria das células de animais, algas e vegetais inferiores como as briófitas (musgos) e pteridófitas (samambaias).
Estruturalmente, são constituídos por um total de nove trios de microtúbulos protéicos, que se organizam em cilindro.
São autoduplicáveis no período que precede a divisão celular, migrando, logo a seguir, para os pólos opostos da célula.
Uma das providências que a fábrica celular precisa tomar é a construção de novas fábricas, isto é, a sua multiplicação. Isso envolve uma elaboração prévia de uma serie de “andaimes” protéicos, o chamado fuso de divisão, formado por inúmeros filamentos de microtúbulos.
Embora esses microtúbulos não sejam originados dos centríolos e sim de uma região da célula conhecido como centrossomo, é comum aparticipação deles no processo de divisão de uma célula animal. Já em células de vegetais superiores, como não existem centríolos, sua multiplicação se processa sem eles.
Os Cílios e Flagelos
São estruturas móveis, encontradas externamente em células de diversos seres vivos. Os cílios são curtose podem ser relacionados à locomoção e a remoção de impurezas.Nas células que revestem a traquéia humana, por exemplo, os batimentos ciliares empurram impurezas provenientes do ar inspirado, trabalho facilitado pela mistura com o muco que, produzido pelas células da traquéia, lubrifica e protege a traquéia. Em alguns protozoários, por exemplo, o paramécio, os cílios são utilizados para a locomoção.
Os flagelos são longos e também se relacionam a locomoção de certas células, como a de alguns protozoários (por exemplo, o tripanosssomo causador da doença de Chagas) e a do espermatozóide.
Em alguns organismos pluricelulares, por exemplo, nas esponjas, o batimento flagelar cria correntes de água que percorrem canais e cavidades internas, trazendo, por exemplo, partículas de alimento.
Estruturalmente, cílios e flagelos são idênticos. Ambos são cilíndricos, exteriores as células e cobertos por membrana plasmática. Internamente, cada cílio ou flagelo é constituído por um conjunto de nove pares de microtúbulos periféricos de tubulina, circundando um par de microtúbulos centrais. É a chamada estrutura 9 + 2.
Tanto os cílios como flagelos são originados por uma região organizadora no interior da célula, conhecida como corpúsculo basal. Em cada corpúsculo basal há um conjunto de nove trios de microtúbulos (ao invés de duplas, como nos cílios e flagelos), dispostos em círculo. Nesse sentido, a estrutura do corpúsculo basal é semelhante à de um centríolo.
Mitocôndrias
Estrutura e função das mitocôndrias
As mitocôndrias estão imersas no citosol, entre as diversas bolsas e filamentos que preenchem o citoplasma das células eucariontes. Elas são verdadeiras “casas de força” das células, pois produzem energia para todas as atividades celulares.
As mitocôndrias foram descobertas em meados do século XIX, e, durante décadas, sua existência foi questionada por alguns citologistas. Somente em 1890 foi demonstrada, de modo incontestável, a presença de mitocôndrias no citoplasma celular. O termo “mitocôndria” (do grego, mitos, fio, e condros, cartilagem) surgiu em 1898, possivelmente como referência ao aspecto filamentoso e homogêneo (cartilaginoso) dessas organelas em alguns tipos de células, quando observadas ao microscópio óptico.
As mitocôndrias, cujo número varia de dezenas até centenas, dependendo do tipo de célula, estão presentes praticamente em todos os seres eucariontes, sejam animais, plantas, algas, fungos ou protozoários.
Estrutura interna das mitocôndrias
As mitocôndrias são delimitadas por duas membranas lipoprotéicas semelhantes às demais membranas celulares. Enquanto a membrana externa é lisa, a membrana interna possui inúmeras pregas – as cristas mitocondriais – que se projetam para o interior da organela.
A cavidade interna das mitocôndrias é preenchida por um fluido denominado matriz mitocondrial, onde estão presentes diversas enzimas, além de DNA e RNA e pequenos ribossomos e substâncias necessárias à fabricação de determinadas proteínas.
A respiração celular
No interior das mitocôndrias ocorre a respiração celular, processo em que moléculas orgânicas de alimento reagem com gás oxigênio (O2), transformando-se em gás carbônico (CO2) e água (H2O) e liberando energia.
C6H12O6 + O2 -> 6 CO2 + 6 H2O + energia
A energia liberada na respiração celular é armazenada em uma substância chamada ATP(adenosina trifosfato), que se difunde para todas as regiões da célula, fornecendo energia para as mais diversas atividades celulares. O processo de respiração celular será melhor explicado na seção de Metabolismo energético.
Toda mitocôndria surge da reprodução de uma outra mitocôndria. Quando a célula vai se dividir, suas mitocôndrias se separam em dois grupos mais ou menos equivalentes, que se posicionam em cada um dos lados do citoplasma.
Ao final da divisão cada um dos grupos fica em uma célula-filha. Posteriormente, no decorrer do crescimento das células, as mitocôndrias se duplicam e crescem, restabelecendo o número original.
As mitocôndrias do espermatozóide penetram no óvulo durante a fecundação e degeneram-se logo em seguida, portanto, as mitocôndrias presentes na célula-ovo são originárias exclusivamente da mãe. As mitocôndrias ovulares, que se multiplicam sempre que a célula se reproduz, são as ancestrais de todas, as mitocôndrias presentes em nossas células.
Muitos cientistas estão convencidos de que as mitocôndrias são descendentes de seres procariontes primitivos que um dia se instalaram no citoplasma das primeiras células eucariontes. Existem evidências que apóiam essa hipótese, tais como o fato de as mitocôndrias apresentarem material genético mais parecido com a das bactérias do que com a das células eucariontes em que se encontram.
O mesmo ocorre com relação a maquinaria para a síntese de proteínas: os ribossomos mitocondriais são muito semelhantes aos das bactérias e bem diferentes dos ribossomos presentes no citoplasma das células eucariontes.